/************************************************************************************************* PROGRAMMINFO ************************************************************************************************** Funktion: ESP32 mit TFT1,77" ST7735 Analogwertanzeige --------------------------------------------------------------------------------------------------- Update Library User_Setup.h!: --------------------------------------------------------------------------------------------------- // USER DEFINED SETTINGS // Set driver type, fonts to be loaded, pins used and SPI control method etc // // See the User_Setup_Select.h file if you wish to be able to define multiple // setups and then easily select which setup file is used by the compiler. // // If this file is edited correctly then all the library example sketches should // run without the need to make any more changes for a particular hardware setup! // Note that some sketches are designed for a particular TFT pixel width/height // ################################################################################## // // Section 1. Call up the right driver file and any options for it // // ################################################################################## // Only define one driver, the other ones must be commented out //#define ILI9341_DRIVER #define ST7735_DRIVER // Define additional parameters below for this display //#define ILI9163_DRIVER // Define additional parameters below for this display //#define S6D02A1_DRIVER //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI //#define HX8357D_DRIVER //#define ILI9481_DRIVER //#define ILI9486_DRIVER //#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) //#define ST7789_DRIVER // Define additional parameters below for this display //#define R61581_DRIVER // Some displays support SPI reads via the MISO pin, other displays have a single // bi-directional SDA pin and the library will try to read this via the MOSI line. // To use the SDA line for reading data from the TFT uncomment the following line: // #define TFT_SDA_READ // This option if for ESP32 ONLY, tested with ST7789 display only // For ST7789 ONLY, define the colour order IF the blue and red are swapped on your display // Try ONE option at a time to find the correct colour order for your display // #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below // #define M5STACK // For ST7789, ST7735 and ILI9163 ONLY, define the pixel width and height in portrait orientation // #define TFT_WIDTH 80 #define TFT_WIDTH 128 // #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 #define TFT_HEIGHT 160 // #define TFT_HEIGHT 128 // #define TFT_HEIGHT 240 // ST7789 240 x 240 // #define TFT_HEIGHT 320 // ST7789 240 x 320 // For ST7735 ONLY, define the type of display, originally this was based on the // colour of the tab on the screen protector film but this is not always true, so try // out the different options below if the screen does not display graphics correctly, // e.g. colours wrong, mirror images, or tray pixels at the edges. // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this // this User_Setup file, then rebuild and upload the sketch to the board again: // #define ST7735_INITB // #define ST7735_GREENTAB // #define ST7735_GREENTAB2 // #define ST7735_GREENTAB3 // #define ST7735_GREENTAB128 // For 128 x 128 display // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) #define ST7735_REDTAB // #define ST7735_BLACKTAB // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset // If colours are inverted (white shows as black) then uncomment one of the next // 2 lines try both options, one of the options should correct the inversion. // #define TFT_INVERSION_ON // #define TFT_INVERSION_OFF // If a backlight control signal is available then define the TFT_BL pin in Section 2 // below. The backlight will be turned ON when tft.begin() is called, but the library // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be // driven with a PWM signal or turned OFF/ON then this must be handled by the user // sketch. e.g. with digitalWrite(TFT_BL, LOW); // #define TFT_BACKLIGHT_ON HIGH // HIGH or LOW are options // ################################################################################## // // Section 2. Define the pins that are used to interface with the display here // // ################################################################################## // We must use hardware SPI, a minimum of 3 GPIO pins is needed. // Typical setup for ESP8266 NodeMCU ESP-12 is : // // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT) // Display LED to NodeMCU pin VIN (or 5V, see below) // Display SCK to NodeMCU pin D5 // Display SDI/MOSI to NodeMCU pin D7 // Display DC (RS/AO)to NodeMCU pin D3 // Display RESET to NodeMCU pin D4 (or RST, see below) // Display CS to NodeMCU pin D8 (or GND, see below) // Display GND to NodeMCU pin GND (0V) // Display VCC to NodeMCU 5V or 3.3V // // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin // // The DC (Data Command) pin may be labeled AO or RS (Register Select) // // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. // // The NodeMCU D0 pin can be used for RST // // // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin // If 5V is not available at a pin you can use 3.3V but backlight brightness // will be lower. // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ###### // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation //#define TFT_CS PIN_D8 // Chip select control pin D8 //#define TFT_DC PIN_D3 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V //#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin) //#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen //#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only // ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ###### // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact // but saves pins for other functions. // Use NodeMCU SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode // In ESP8266 overlap mode the following must be defined //#define TFT_SPI_OVERLAP // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 //#define TFT_CS PIN_D3 //#define TFT_DC PIN_D5 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ###### // For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins #define TFT_MISO 19 #define TFT_MOSI 23 #define TFT_SCLK 18 #define TFT_CS 17// Chip select control pin #define TFT_DC 2 // Data Command control pin #define TFT_RST 14 // Reset pin (could connect to RST pin) //#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST //#define TFT_BL 32 // LED back-light (only for ST7789 with backlight control pin) //#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen //#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only // For the M5Stack module use these #define lines //#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS 14 // Chip select control pin //#define TFT_DC 27 // Data Command control pin //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) //#define TFT_BL 32 // LED back-light (required for M5Stack) // ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### // The library supports 8 bit parallel TFTs with the ESP32, the pin // selection below is compatible with ESP32 boards in UNO format. // Wemos D32 boards need to be modified, see diagram in Tools folder. // Only ILI9481 and ILI9341 based displays have been tested! // Parallel bus is only supported on ESP32 // Uncomment line below to use ESP32 Parallel interface instead of SPI //#define ESP32_PARALLEL // The ESP32 and TFT the pins used for testing are: //#define TFT_CS 33 // Chip select control pin (library pulls permanently low //#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31 //#define TFT_RST 32 // Reset pin, toggles on startup //#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31 //#define TFT_RD 2 // Read strobe control pin //#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus //#define TFT_D1 13 // so a single register write sets/clears all bits. //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect //#define TFT_D3 25 // TFT screen update performance. //#define TFT_D4 17 //#define TFT_D5 16 //#define TFT_D6 27 //#define TFT_D7 14 // ################################################################################## // // Section 3. Define the fonts that are to be used here // // ################################################################################## // Comment out the #defines below with // to stop that font being loaded // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not // normally necessary. If all fonts are loaded the extra FLASH space required is // about 17Kbytes. To save FLASH space only enable the fonts you need! #define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts // Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded // this will save ~20kbytes of FLASH #define SMOOTH_FONT // ################################################################################## // // Section 4. Other options // // ################################################################################## // Define the SPI clock frequency, this affects the graphics rendering speed. Too // fast and the TFT driver will not keep up and display corruption appears. // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) // With an ILI9163 display 27 MHz works OK. // The RPi typically only works at 20MHz maximum. // #define SPI_FREQUENCY 1000000 // #define SPI_FREQUENCY 5000000 // #define SPI_FREQUENCY 10000000 // #define SPI_FREQUENCY 20000000 #define SPI_FREQUENCY 27000000 // Actually sets it to 26.67MHz = 80/3 // #define SPI_FREQUENCY 40000000 // Maximum to use SPIFFS // #define SPI_FREQUENCY 80000000 // Optional reduced SPI frequency for reading TFT #define SPI_READ_FREQUENCY 20000000 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: #define SPI_TOUCH_FREQUENCY 2500000 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) // then uncomment the following line: //#define USE_HSPI_PORT // Comment out the following #define if "SPI Transactions" do not need to be // supported. When commented out the code size will be smaller and sketches will // run slightly faster, so leave it commented out unless you need it! // Transaction support is needed to work with SD library but not needed with TFT_SdFat // Transaction support is required if other SPI devices are connected. // Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) // so changing it here has no effect // #define SUPPORT_TRANSACTIONS --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ************************************************************************************************** Version: 21.04.2022 ************************************************************************************************** Board: ESP32vn IoT UNO Boardverwalter Ver 1.0.4 ************************************************************************************************** C++ Arduino IDE V1.8.19 ************************************************************************************************** Einstellungen: https://dl.espressif.com/dl/package_esp32_index.json http://dan.drown.org/stm32duino/package_STM32duino_index.json https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json ************************************************************************************************* * Verdrahtung: * Display ESP32 LEDA 3,3V CS 1 7 RS 2 RES 14 MOSI SDA 23 SCL SCK 18 VCC 5V GND GND **************************************************************************************************/ // Define meter size #define M_SIZE 0.667 #include // Hardware-specific library #include TFT_eSPI tft = TFT_eSPI(); // Invoke custom library #define TFT_GREY 0x5AEB #define TFT_ORANGE 0x001F //rot 255, 165, 0 0xF800 blau 0xF81F Magenta float ltx = 0; // Saved x coord of bottom of needle uint16_t osx = M_SIZE*120, osy = M_SIZE*120; // Saved x & y coords uint32_t updateTime = 0; // time for next update int old_analog = -999; // Value last displayed int value[6] = {0, 0, 0, 0, 0, 0}; int old_value[6] = { -1, -1, -1, -1, -1, -1}; int d = 0; int sensor =0; int sensor_reading01 = 0; const int Poti = 4; //Poti an GPIO 04 void setup(void) { Serial.begin(57600); // For debug tft.init(); tft.setRotation(3); tft.fillScreen(TFT_BLACK); analogMeter(); // Draw analogue meter updateTime = millis(); // Next update time } void loop() { sensor_reading01 = analogRead(Poti); sensor = map(sensor_reading01, 0, 4095, 0, 100); if (updateTime <= millis()) { updateTime = millis() + 35; // Update meter every 35 milliseconds // Create a Sine wave for testing d += 0; if (d >= 360) d = 0; //d += 4; // value[0] = 50 + 50 * sin((d + 0) * 0.0174532925); value[0] = sensor; //Potiwert anzeigen //value[0] = random(0,100); //unsigned long tt = millis(); plotNeedle(value[0], 0); // It takes between 2 and 14ms to replot the needle with zero delay //Serial.println(millis()-tt); } } // ######################################################################### // Draw the analogue meter on the screen // ######################################################################### void analogMeter() { // Meter outline tft.fillRect(0, 0, M_SIZE*239, M_SIZE*131, TFT_GREY); tft.fillRect(1, M_SIZE*3, M_SIZE*234, M_SIZE*125, TFT_WHITE); tft.setTextColor(TFT_BLACK); // Text colour // Draw ticks every 5 degrees from -50 to +50 degrees (100 deg. FSD swing) for (int i = -50; i < 51; i += 5) { // Long scale tick length int tl = 15; // Coodinates of tick to draw float sx = cos((i - 90) * 0.0174532925); float sy = sin((i - 90) * 0.0174532925); uint16_t x0 = sx * (M_SIZE*100 + tl) + M_SIZE*120; uint16_t y0 = sy * (M_SIZE*100 + tl) + M_SIZE*150; uint16_t x1 = sx * M_SIZE*100 + M_SIZE*120; uint16_t y1 = sy * M_SIZE*100 + M_SIZE*150; /* // Coordinates of next tick for zone fill float sx2 = cos((i + 5 - 90) * 0.0174532925); float sy2 = sin((i + 5 - 90) * 0.0174532925); int x2 = sx2 * (M_SIZE*100 + tl) + M_SIZE*120; int y2 = sy2 * (M_SIZE*100 + tl) + M_SIZE*150; int x3 = sx2 * M_SIZE*100 + M_SIZE*120; int y3 = sy2 * M_SIZE*100 + M_SIZE*150; */ float sx2 = cos((i + 5 - 90) * 0.0174532925); float sy2 = sin((i + 5 - 90) * 0.0174532925); int x2 = sx2 * (M_SIZE*100 + tl) + M_SIZE*120; int y2 = sy2 * (M_SIZE*100 + tl) + M_SIZE*150; int x3 = sx2 * M_SIZE*100 + M_SIZE*120; int y3 = sy2 * M_SIZE*100 + M_SIZE*150; // Yellow zone limits //if (i >= -50 && i < 0) { // tft.fillTriangle(x0, y0, x1, y1, x2, y2, TFT_YELLOW); // tft.fillTriangle(x1, y1, x2, y2, x3, y3, TFT_YELLOW); //} // Green zone limits if (i >= 0 && i < 25) { tft.fillTriangle(x0, y0, x1, y1, x2, y2, TFT_GREEN); tft.fillTriangle(x1, y1, x2, y2, x3, y3, TFT_GREEN); } // Orange zone limits if (i >= 25 && i < 50) { tft.fillTriangle(x0, y0, x1, y1, x2, y2, TFT_ORANGE); tft.fillTriangle(x1, y1, x2, y2, x3, y3, TFT_ORANGE); } // Short scale tick length if (i % 25 != 0) tl = 8; // Recalculate coords incase tick lenght changed x0 = sx * (M_SIZE*100 + tl) + M_SIZE*120; y0 = sy * (M_SIZE*100 + tl) + M_SIZE*150; x1 = sx * M_SIZE*100 + M_SIZE*120; y1 = sy * M_SIZE*100 + M_SIZE*150; // Draw tick tft.drawLine(x0, y0, x1, y1, TFT_BLACK); // Check if labels should be drawn, with position tweaks if (i % 25 == 0) { // Calculate label positions x0 = sx * (M_SIZE*100 + tl + 10) + M_SIZE*120; y0 = sy * (M_SIZE*100 + tl + 10) + M_SIZE*150; switch (i / 25) { case -2: tft.drawCentreString("0", x0+4, y0-4, 1); break; case -1: tft.drawCentreString("25", x0+2, y0, 1); break; case 0: tft.drawCentreString("50", x0, y0, 1); break; case 1: tft.drawCentreString("75", x0, y0, 1); break; case 2: tft.drawCentreString("100", x0-2, y0-4, 1); break; } } // Now draw the arc of the scale sx = cos((i + 5 - 90) * 0.0174532925); sy = sin((i + 5 - 90) * 0.0174532925); x0 = sx * M_SIZE*100 + M_SIZE*120; y0 = sy * M_SIZE*100 + M_SIZE*150; // Draw scale arc, don't draw the last part if (i < 50) tft.drawLine(x0, y0, x1, y1, TFT_BLACK); } tft.drawString("%rLF", M_SIZE*(3 + 230 - 40), M_SIZE*(119 - 20), 2); // Units at bottom right tft.drawCentreString("%rLF", M_SIZE*120, M_SIZE*75, 4); // Comment out to avoid font 4 tft.drawRect(1, M_SIZE*3, M_SIZE*236, M_SIZE*126, TFT_BLACK); // Draw bezel line plotNeedle(0, 0); // Put meter needle at 0 } // ######################################################################### // Update needle position // This function is blocking while needle moves, time depends on ms_delay // 10ms minimises needle flicker if text is drawn within needle sweep area // Smaller values OK if text not in sweep area, zero for instant movement but // does not look realistic... (note: 100 increments for full scale deflection) // ######################################################################### void plotNeedle(int value, byte ms_delay) { tft.setTextColor(TFT_BLACK, TFT_WHITE); char buf[8]; dtostrf(value, 4, 0, buf); tft.drawRightString(buf, 33, M_SIZE*(119 - 20), 2); if (value < -10) value = -10; // Limit value to emulate needle end stops if (value > 110) value = 110; // Move the needle until new value reached while (!(value == old_analog)) { if (old_analog < value) old_analog++; else old_analog--; if (ms_delay == 0) old_analog = value; // Update immediately if delay is 0 float sdeg = map(old_analog, -10, 110, -150, -30); // Map value to angle // Calculate tip of needle coords float sx = cos(sdeg * 0.0174532925); float sy = sin(sdeg * 0.0174532925); // Calculate x delta of needle start (does not start at pivot point) float tx = tan((sdeg + 90) * 0.0174532925); // Erase old needle image tft.drawLine(M_SIZE*(120 + 24 * ltx) - 1, M_SIZE*(150 - 24), osx - 1, osy, TFT_WHITE); tft.drawLine(M_SIZE*(120 + 24 * ltx), M_SIZE*(150 - 24), osx, osy, TFT_WHITE); tft.drawLine(M_SIZE*(120 + 24 * ltx) + 1, M_SIZE*(150 - 24), osx + 1, osy, TFT_WHITE); // Re-plot text under needle tft.setTextColor(TFT_BLACK, TFT_WHITE); tft.drawCentreString("%rLF", M_SIZE*120, M_SIZE*75, 4); // // Comment out to avoid font 4 // Store new needle end coords for next erase ltx = tx; osx = M_SIZE*(sx * 98 + 120); osy = M_SIZE*(sy * 98 + 150); // Draw the needle in the new postion, magenta makes needle a bit bolder // draws 3 lines to thicken needle tft.drawLine(M_SIZE*(120 + 24 * ltx) - 1, M_SIZE*(150 - 24), osx - 1, osy, TFT_RED); tft.drawLine(M_SIZE*(120 + 24 * ltx), M_SIZE*(150 - 24), osx, osy, TFT_MAGENTA); tft.drawLine(M_SIZE*(120 + 24 * ltx) + 1, M_SIZE*(150 - 24), osx + 1, osy, TFT_RED); // Slow needle down slightly as it approaches new postion if (abs(old_analog - value) < 10) ms_delay += ms_delay / 5; // Wait before next update //delay(ms_delay); delay(2000); //Anzeige reagiert 2s verzögert } }