/************************************************************************************************* PROGRAMMINFO ************************************************************************************************** Funktion: ESP32 mit TFT1,77" ST7735 Analog-Clock --------------------------------------------------------------------------------------------------- Update Library User_Setup.h!: --------------------------------------------------------------------------------------------------- // USER DEFINED SETTINGS // Set driver type, fonts to be loaded, pins used and SPI control method etc // // See the User_Setup_Select.h file if you wish to be able to define multiple // setups and then easily select which setup file is used by the compiler. // // If this file is edited correctly then all the library example sketches should // run without the need to make any more changes for a particular hardware setup! // Note that some sketches are designed for a particular TFT pixel width/height // ################################################################################## // // Section 1. Call up the right driver file and any options for it // // ################################################################################## // Only define one driver, the other ones must be commented out //#define ILI9341_DRIVER #define ST7735_DRIVER // Define additional parameters below for this display //#define ILI9163_DRIVER // Define additional parameters below for this display //#define S6D02A1_DRIVER //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI //#define HX8357D_DRIVER //#define ILI9481_DRIVER //#define ILI9486_DRIVER //#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) //#define ST7789_DRIVER // Define additional parameters below for this display //#define R61581_DRIVER // Some displays support SPI reads via the MISO pin, other displays have a single // bi-directional SDA pin and the library will try to read this via the MOSI line. // To use the SDA line for reading data from the TFT uncomment the following line: // #define TFT_SDA_READ // This option if for ESP32 ONLY, tested with ST7789 display only // For ST7789 ONLY, define the colour order IF the blue and red are swapped on your display // Try ONE option at a time to find the correct colour order for your display // #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below // #define M5STACK // For ST7789, ST7735 and ILI9163 ONLY, define the pixel width and height in portrait orientation // #define TFT_WIDTH 80 #define TFT_WIDTH 128 // #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 #define TFT_HEIGHT 160 // #define TFT_HEIGHT 128 // #define TFT_HEIGHT 240 // ST7789 240 x 240 // #define TFT_HEIGHT 320 // ST7789 240 x 320 // For ST7735 ONLY, define the type of display, originally this was based on the // colour of the tab on the screen protector film but this is not always true, so try // out the different options below if the screen does not display graphics correctly, // e.g. colours wrong, mirror images, or tray pixels at the edges. // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this // this User_Setup file, then rebuild and upload the sketch to the board again: // #define ST7735_INITB // #define ST7735_GREENTAB // #define ST7735_GREENTAB2 // #define ST7735_GREENTAB3 // #define ST7735_GREENTAB128 // For 128 x 128 display // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) #define ST7735_REDTAB // #define ST7735_BLACKTAB // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset // If colours are inverted (white shows as black) then uncomment one of the next // 2 lines try both options, one of the options should correct the inversion. // #define TFT_INVERSION_ON // #define TFT_INVERSION_OFF // If a backlight control signal is available then define the TFT_BL pin in Section 2 // below. The backlight will be turned ON when tft.begin() is called, but the library // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be // driven with a PWM signal or turned OFF/ON then this must be handled by the user // sketch. e.g. with digitalWrite(TFT_BL, LOW); // #define TFT_BACKLIGHT_ON HIGH // HIGH or LOW are options // ################################################################################## // // Section 2. Define the pins that are used to interface with the display here // // ################################################################################## // We must use hardware SPI, a minimum of 3 GPIO pins is needed. // Typical setup for ESP8266 NodeMCU ESP-12 is : // // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT) // Display LED to NodeMCU pin VIN (or 5V, see below) // Display SCK to NodeMCU pin D5 // Display SDI/MOSI to NodeMCU pin D7 // Display DC (RS/AO)to NodeMCU pin D3 // Display RESET to NodeMCU pin D4 (or RST, see below) // Display CS to NodeMCU pin D8 (or GND, see below) // Display GND to NodeMCU pin GND (0V) // Display VCC to NodeMCU 5V or 3.3V // // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin // // The DC (Data Command) pin may be labeled AO or RS (Register Select) // // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. // // The NodeMCU D0 pin can be used for RST // // // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin // If 5V is not available at a pin you can use 3.3V but backlight brightness // will be lower. // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ###### // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation //#define TFT_CS PIN_D8 // Chip select control pin D8 //#define TFT_DC PIN_D3 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V //#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin) //#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen //#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only // ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ###### // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact // but saves pins for other functions. // Use NodeMCU SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode // In ESP8266 overlap mode the following must be defined //#define TFT_SPI_OVERLAP // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 //#define TFT_CS PIN_D3 //#define TFT_DC PIN_D5 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ###### // For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins #define TFT_MISO 19 #define TFT_MOSI 23 #define TFT_SCLK 18 #define TFT_CS 17// Chip select control pin #define TFT_DC 2 // Data Command control pin #define TFT_RST 14 // Reset pin (could connect to RST pin) //#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST //#define TFT_BL 32 // LED back-light (only for ST7789 with backlight control pin) //#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen //#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only // For the M5Stack module use these #define lines //#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS 14 // Chip select control pin //#define TFT_DC 27 // Data Command control pin //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) //#define TFT_BL 32 // LED back-light (required for M5Stack) // ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### // The library supports 8 bit parallel TFTs with the ESP32, the pin // selection below is compatible with ESP32 boards in UNO format. // Wemos D32 boards need to be modified, see diagram in Tools folder. // Only ILI9481 and ILI9341 based displays have been tested! // Parallel bus is only supported on ESP32 // Uncomment line below to use ESP32 Parallel interface instead of SPI //#define ESP32_PARALLEL // The ESP32 and TFT the pins used for testing are: //#define TFT_CS 33 // Chip select control pin (library pulls permanently low //#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31 //#define TFT_RST 32 // Reset pin, toggles on startup //#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31 //#define TFT_RD 2 // Read strobe control pin //#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus //#define TFT_D1 13 // so a single register write sets/clears all bits. //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect //#define TFT_D3 25 // TFT screen update performance. //#define TFT_D4 17 //#define TFT_D5 16 //#define TFT_D6 27 //#define TFT_D7 14 // ################################################################################## // // Section 3. Define the fonts that are to be used here // // ################################################################################## // Comment out the #defines below with // to stop that font being loaded // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not // normally necessary. If all fonts are loaded the extra FLASH space required is // about 17Kbytes. To save FLASH space only enable the fonts you need! #define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts // Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded // this will save ~20kbytes of FLASH #define SMOOTH_FONT // ################################################################################## // // Section 4. Other options // // ################################################################################## // Define the SPI clock frequency, this affects the graphics rendering speed. Too // fast and the TFT driver will not keep up and display corruption appears. // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) // With an ILI9163 display 27 MHz works OK. // The RPi typically only works at 20MHz maximum. // #define SPI_FREQUENCY 1000000 // #define SPI_FREQUENCY 5000000 // #define SPI_FREQUENCY 10000000 // #define SPI_FREQUENCY 20000000 #define SPI_FREQUENCY 27000000 // Actually sets it to 26.67MHz = 80/3 // #define SPI_FREQUENCY 40000000 // Maximum to use SPIFFS // #define SPI_FREQUENCY 80000000 // Optional reduced SPI frequency for reading TFT #define SPI_READ_FREQUENCY 20000000 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: #define SPI_TOUCH_FREQUENCY 2500000 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) // then uncomment the following line: //#define USE_HSPI_PORT // Comment out the following #define if "SPI Transactions" do not need to be // supported. When commented out the code size will be smaller and sketches will // run slightly faster, so leave it commented out unless you need it! // Transaction support is needed to work with SD library but not needed with TFT_SdFat // Transaction support is required if other SPI devices are connected. // Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) // so changing it here has no effect // #define SUPPORT_TRANSACTIONS --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ************************************************************************************************** Version: 21.04.2022 ************************************************************************************************** Board: ESP32vn IoT UNO Boardverwalter Ver 1.0.4 ************************************************************************************************** C++ Arduino IDE V1.8.19 ************************************************************************************************** Einstellungen: https://dl.espressif.com/dl/package_esp32_index.json http://dan.drown.org/stm32duino/package_STM32duino_index.json https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json ************************************************************************************************* * Verdrahtung: * Display ESP32 LEDA 3,3V CS 1 7 RS 2 RES 14 MOSI SDA 23 SCL SCK 18 VCC 5V GND GND **************************************************************************************************/ #include // Graphics and font library for ST7735 driver chip #include TFT_eSPI tft = TFT_eSPI(); // Invoke library, pins defined in User_Setup.h #define TFT_GREY 0xBDF7 float sx = 0, sy = 1, mx = 1, my = 0, hx = -1, hy = 0; // Saved H, M, S x & y multipliers float sdeg=0, mdeg=0, hdeg=0; uint16_t osx=64, osy=64, omx=64, omy=64, ohx=64, ohy=64; // Saved H, M, S x & y coords uint16_t x0=0, x1=0, yy0=0, yy1=0; uint32_t targetTime = 0; // for next 1 second timeout static uint8_t conv2d(const char* p) { uint8_t v = 0; if ('0' <= *p && *p <= '9') v = *p - '0'; return 10 * v + *++p - '0'; } uint8_t hh=conv2d(__TIME__), mm=conv2d(__TIME__+3), ss=conv2d(__TIME__+6); // Get H, M, S from compile time boolean initial = 1; void setup(void) { tft.init(); tft.setRotation(0); tft.fillScreen(TFT_GREY); tft.setTextColor(TFT_GREEN, TFT_GREY); // Adding a black background colour erases previous text automatically // Draw clock face tft.fillCircle(64, 64, 61, TFT_BLUE); tft.fillCircle(64, 64, 57, TFT_BLACK); // Draw 12 lines for(int i = 0; i<360; i+= 30) { sx = cos((i-90)*0.0174532925); sy = sin((i-90)*0.0174532925); x0 = sx*57+64; yy0 = sy*57+64; x1 = sx*50+64; yy1 = sy*50+64; tft.drawLine(x0, yy0, x1, yy1, TFT_BLUE); } // Draw 60 dots for(int i = 0; i<360; i+= 6) { sx = cos((i-90)*0.0174532925); sy = sin((i-90)*0.0174532925); x0 = sx*53+64; yy0 = sy*53+64; tft.drawPixel(x0, yy0, TFT_BLUE); if(i==0 || i==180) tft.fillCircle(x0, yy0, 1, TFT_CYAN); if(i==0 || i==180) tft.fillCircle(x0+1, yy0, 1, TFT_CYAN); if(i==90 || i==270) tft.fillCircle(x0, yy0, 1, TFT_CYAN); if(i==90 || i==270) tft.fillCircle(x0+1, yy0, 1, TFT_CYAN); } tft.fillCircle(65, 65, 3, TFT_RED); // Draw text at position 64,125 using fonts 4 // Only font numbers 2,4,6,7 are valid. Font 6 only contains characters [space] 0 1 2 3 4 5 6 7 8 9 : . a p m // Font 7 is a 7 segment font and only contains characters [space] 0 1 2 3 4 5 6 7 8 9 : . // tft.drawCentreString("Time flies",64,130,4); targetTime = millis() + 1000; } void loop() { if (targetTime < millis()) { targetTime = millis()+1000; ss++; // Advance second if (ss==60) { ss=0; mm++; // Advance minute if(mm>59) { mm=0; hh++; // Advance hour if (hh>23) { hh=0; } } } // Pre-compute hand degrees, x & y coords for a fast screen update sdeg = ss*6; // 0-59 -> 0-354 mdeg = mm*6+sdeg*0.01666667; // 0-59 -> 0-360 - includes seconds hdeg = hh*30+mdeg*0.0833333; // 0-11 -> 0-360 - includes minutes and seconds hx = cos((hdeg-90)*0.0174532925); hy = sin((hdeg-90)*0.0174532925); mx = cos((mdeg-90)*0.0174532925); my = sin((mdeg-90)*0.0174532925); sx = cos((sdeg-90)*0.0174532925); sy = sin((sdeg-90)*0.0174532925); if (ss==0 || initial) { initial = 0; // Erase hour and minute hand positions every minute tft.drawLine(ohx, ohy, 65, 65, TFT_BLACK); ohx = hx*33+65; ohy = hy*33+65; tft.drawLine(omx, omy, 65, 65, TFT_BLACK); omx = mx*44+65; omy = my*44+65; } // Redraw new hand positions, hour and minute hands not erased here to avoid flicker tft.drawLine(osx, osy, 65, 65, TFT_BLACK); tft.drawLine(ohx, ohy, 65, 65, TFT_WHITE); tft.drawLine(omx, omy, 65, 65, TFT_WHITE); osx = sx*47+65; osy = sy*47+65; tft.drawLine(osx, osy, 65, 65, TFT_RED); tft.fillCircle(65, 65, 3, TFT_RED); } }